首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   4篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   8篇
  2011年   2篇
  2010年   5篇
  2009年   4篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   6篇
  2001年   1篇
  2000年   3篇
  1995年   1篇
  1992年   1篇
  1977年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
41.

Introduction  

The glucocorticoid receptor (GR) plays an important regulatory role in the immune system. Four polymorphisms in the GR gene are associated with differences in glucocorticoid (GC) sensitivity; the minor alleles of the polymorphisms N363 S and BclI are associated with relative hypersensitivity to GCs, while those of the polymorphisms ER22/23EK and 9β are associated with relative GC resistance. Because differences in GC sensitivity may influence immune effector functions, we examined whether these polymorphisms are associated with the susceptibility to develop Rheumatoid Arthritis (RA) and RA disease severity.  相似文献   
42.
Pancreatic cancer is a multiple genetic disorder with many mutations identified during the progression. Two mouse pancreatic cancer cell lines were established which showed different phenotype in vivo: a non-metastatic cell line, Panc02, and a highly metastatic cell line, Panc02-H7, a derivative of Panc02. In order to investigate whether the genetic mutations of key genes in pancreatic cancer such as KRAS, TP53 (p53), CDKN2A (p16), SMAD4, ZIP4, and PDX-1 contribute to the phenotypic difference of these two mouse pancreatic cancer cells, we sequenced the exonic regions of these key genes in both cell lines and in the normal syngeneic mouse pancreas and compared them with the reference mouse genome sequence. The exons of KRAS, SMAD4, CDKN2A (p16), TP53 (p53), ZIP4, and PDX-1 genes were amplified and the genotype of these genes was determined by Sanger sequencing. The sequences were analyzed with Sequencher software. A mutation in SMAD4 was identified in both cell lines. This homozygote G to T mutation in the first position of codon 174 (GAA) generated a stop codon resulting in the translation of a truncated protein. Further functional analysis indicates that different TGF-β/SMAD signaling pathways were involved in those two mouse cell lines, which may explain the phonotypic difference between the two cells. A single nucleotide polymorphism (SNP) in KRAS gene (TAT to TAC at codon 32) was also identified in the normal pancreas DNA of the syngenic mouse and in both derived tumoral Panc02 and Panc02-H7 cells. No mutation or SNP was found in CDKN2A (p16), TP53 (p53), ZIP4, and PDX-1 genes in these two cell lines. The absence of mutations in genes such as KRAS, TP53, and CDKN2A, which are considered as key genes in the development of human pancreatic cancer suggests that SMAD4 might play a central and decisive role in mouse pancreatic cancer. These results also suggest that other mechanisms are involved in the substantial phenotypic difference between these two mouse pancreatic cancer cell lines. Further studies are warranted to elucidate the molecular pathways that lead to the aggressive metastatic potential of Panc02-H7.  相似文献   
43.
44.

Introduction

The mechanism underlying the spontaneous improvement of rheumatoid arthritis (RA) during pregnancy and the subsequent postpartum flare is incompletely understood, and the disease course varies widely between pregnant RA patients. In pregnancy, total and free levels of cortisol increase gradually, followed by a postpartum decrease to prepregnancy values. The glucocorticoid receptor (GR) polymorphisms BclI and N363S are associated with relatively increased glucocorticoid (GC) sensitivity, whereas the 9β and ER22/23EK polymorphisms of the GR gene are associated with a relatively decreased GC sensitivity. We examined the relation between the presence of these GR polymorphisms and level of disease activity and disease course of RA during pregnancy and postpartum.

Methods

We studied 147 participants of the PARA study (Pregnancy-Induced Amelioration of Rheumatoid Arthritis study), a prospective study investigating the natural improvement during pregnancy and the postpartum flare in women with RA. Patients were visited, preferably before pregnancy, at each trimester and at three postpartum time points. On all occasions, disease activity was scored by using DAS28. All patients were genotyped for the GR polymorphisms BclI, N363S, 9β, and ER22/23EK and divided in groups harboring either polymorphisms conferring increased GC sensitivity (BclI and N363S; GC-S patients) or polymorphisms conferring decreased GC sensitivity (9β or 9β + ER22/23EK; GC-I patients). Data were analyzed by using a mixed linear model, comparing GC-S patients with GC-I patients with respect to improvement during pregnancy and the postpartum flare. The cumulative disease activity was calculated by using time-integrated values (area under the curve, AUC) of DAS28 in GC-I patients versus GC-S patients. Separate analyses were performed according to the state of GC use.

Results

GC-S patients treated with GC had a significantly lower AUC of DAS28 in the postpartum period than did GC-I patients. This difference was not observed in patients who were not treated with GCs. During pregnancy, GC-S and GC-I patients had comparable levels of disease activity and course of disease.

Conclusions

Differences in relative GC sensitivity, as determined by GR polymorphisms, are associated with the level of disease activity in the postpartum period in GC-treated patients, but they do not seem to influence the course of the disease per se.  相似文献   
45.
46.
Non-native vegetation in the riparian zone impacts on water temperatures, flow patterns, degree of shading, channel modification, and changes to natural sediment loads. Freshwater ecosystems in the Garden Route Initiative planning domain are of particular conservation value, because of the rich Gondwanaland relict aquatic macroinvertebrate fauna found in the rivers there, which are vulnerable to thermal changes. Data were collected during 2013 and 2014 at 19 sites on seven river systems between George and Knysna in the southern Cape, South Africa. These included 12 months of hourly water temperatures at all sites, and quantitative sampling of aquatic macroinvertebrates at ten sites. Each site was characterised in terms of water quality (pH, conductivity and turbidity) and general characteristics, including impacts such as density of non-native riparian trees. At the family level, aquatic macroinvertebrate communities showed variation between sites and seasons. Differences were more pronounced on the basis of natural land cover type (fynbos versus indigenous forest) than densities of non-native invasive riparian vegetation. Conservation of these river systems will depend on maintaining a mosaic of natural vegetation types.  相似文献   
47.
Members of the steroid receptor coactivator (SRC) family, which include SRC-1 (NcoA-1/p160), SRC-2(TIF2/GRIP1/NcoA-2) and SRC-3(pCIP/RAC3/ACTR/pCIP/ AIB1/TRAM1), are critical mediators of steroid receptor action. Gene ablation studies previously identified SRC-1 and SRC-2 as being involved in the control of energy homeostasis. A more precise identification of the molecular pathways regulated by these coactivators is crucial for understanding the role of steroid receptor coactivators in the control of energy homeostasis and obesity. A genomic approach using microarray analysis was employed to identify the subsets of genes that are altered in the livers of SRC-1-/-, SRC-2-/-, and SRC-3-/- mice. Microarray analysis demonstrates that gene expression changes are specific and nonoverlapping for each SRC member in the liver. The overall pattern of altered gene expressions in the SRC-1-/- mice was up-regulation, whereas SRC-2-/- mice showed an overall down-regulation. Several key regulatory enzymes of energy metabolism were significantly altered in the liver of SRC-2-/- mice, which are consistent with the prior observation that SRC-2-/- mice have increased energy expenditure. This study demonstrates that the molecular targets of SRC-2 regulation in the murine liver stimulate fatty acid degradation and glycolytic pathway, whereas fatty acid, cholesterol, and steroid biosynthetic pathways are down-regulated.  相似文献   
48.

Background  

Locomotion is an integral component of most animal behaviors, and many human health problems are associated with locomotor deficits. Locomotor behavior is a complex trait, with population variation attributable to many interacting loci with small effects that are sensitive to environmental conditions. However, the genetic basis of this complex behavior is largely uncharacterized.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号